refactor: moved intelligent communication agent to its own file
This commit is contained in:
parent
77fcb26a38
commit
81f6c38df1
3 changed files with 101 additions and 89 deletions
83
agent.py
83
agent.py
|
|
@ -1,17 +1,11 @@
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import re
|
import re
|
||||||
import sys
|
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from collections import deque
|
from collections import deque
|
||||||
from dataclasses import dataclass, field
|
from dataclasses import dataclass, field
|
||||||
from typing import Deque, Optional, Pattern, Set, Tuple
|
from typing import Deque, Optional, Pattern, Set, Tuple
|
||||||
|
|
||||||
try:
|
|
||||||
from litellm import completion
|
|
||||||
except ImportError: # pragma: no cover - optional dependency
|
|
||||||
completion = None # type: ignore[assignment]
|
|
||||||
|
|
||||||
|
|
||||||
class Agent(ABC):
|
class Agent(ABC):
|
||||||
"""Interface for autonomous Telnet actors."""
|
"""Interface for autonomous Telnet actors."""
|
||||||
|
|
@ -121,80 +115,3 @@ class CommunicationAgent(Agent):
|
||||||
print(f"[Agent] Replying to {player}")
|
print(f"[Agent] Replying to {player}")
|
||||||
return reply
|
return reply
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class IntelligentCommunicationAgent(Agent):
|
|
||||||
"""Agent that uses a language model to answer private tells."""
|
|
||||||
|
|
||||||
model: str = "mistral/mistral-tiny"
|
|
||||||
system_prompt: str = (
|
|
||||||
"Du bist Mistle, ein hilfsbereiter MUD-Bot. "
|
|
||||||
"Antworte freundlich und knapp in deutscher Sprache."
|
|
||||||
)
|
|
||||||
temperature: float = 0.7
|
|
||||||
max_output_tokens: int = 120
|
|
||||||
fallback_reply: str = "Hallo! Ich bin Mistle und ein Bot."
|
|
||||||
tell_pattern: Pattern[str] = field(
|
|
||||||
default_factory=lambda: re.compile(
|
|
||||||
r"^(?P<player>[^\s]+) teilt (d|D)ir mit: (?P<message>.+)$",
|
|
||||||
re.MULTILINE,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
last_output: str = field(default="", init=False)
|
|
||||||
pending_replies: Deque[Tuple[str, str]] = field(default_factory=deque, init=False)
|
|
||||||
|
|
||||||
def observe(self, output: str) -> None:
|
|
||||||
if not output:
|
|
||||||
return
|
|
||||||
self.last_output = output
|
|
||||||
for match in self.tell_pattern.finditer(output):
|
|
||||||
player = match.group("player").strip()
|
|
||||||
message = match.group("message").strip()
|
|
||||||
if not player:
|
|
||||||
continue
|
|
||||||
self.pending_replies.append((player, message))
|
|
||||||
print(f"[Agent] Received message from {player}: {message}")
|
|
||||||
|
|
||||||
def decide(self) -> Optional[str]:
|
|
||||||
if not self.pending_replies:
|
|
||||||
return None
|
|
||||||
player, message = self.pending_replies.popleft()
|
|
||||||
reply_text = self._generate_reply(player, message)
|
|
||||||
reply = f"teile {player} mit {reply_text}"
|
|
||||||
print(f"[Agent] Replying to {player} with model output")
|
|
||||||
return reply
|
|
||||||
|
|
||||||
def _generate_reply(self, player: str, message: str) -> str:
|
|
||||||
if completion is None:
|
|
||||||
print(
|
|
||||||
"[Agent] litellm is not installed; falling back to default reply",
|
|
||||||
file=sys.stderr,
|
|
||||||
)
|
|
||||||
return self.fallback_reply
|
|
||||||
|
|
||||||
try:
|
|
||||||
response = completion(
|
|
||||||
model=self.model,
|
|
||||||
messages=[
|
|
||||||
{"role": "system", "content": self.system_prompt},
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": (
|
|
||||||
f"Spieler {player} schreibt: {message}\n"
|
|
||||||
"Formuliere eine kurze, freundliche Antwort."
|
|
||||||
),
|
|
||||||
},
|
|
||||||
],
|
|
||||||
temperature=self.temperature,
|
|
||||||
max_tokens=self.max_output_tokens,
|
|
||||||
)
|
|
||||||
except Exception as exc: # pragma: no cover - network/runtime errors
|
|
||||||
print(f"[Agent] Model call failed: {exc}", file=sys.stderr)
|
|
||||||
return self.fallback_reply
|
|
||||||
|
|
||||||
try:
|
|
||||||
content = response["choices"][0]["message"]["content"].strip()
|
|
||||||
except (KeyError, IndexError, TypeError): # pragma: no cover - defensive
|
|
||||||
return self.fallback_reply
|
|
||||||
|
|
||||||
return content or self.fallback_reply
|
|
||||||
|
|
|
||||||
15
app.py
15
app.py
|
|
@ -153,16 +153,19 @@ def build_agent(agent_spec: str) -> Agent:
|
||||||
return SimpleAgent()
|
return SimpleAgent()
|
||||||
|
|
||||||
builtin_agents = {
|
builtin_agents = {
|
||||||
"explore": "ExploreAgent",
|
"explore": ("agent", "ExploreAgent"),
|
||||||
"communication": "CommunicationAgent",
|
"communication": ("agent", "CommunicationAgent"),
|
||||||
"intelligent": "IntelligentCommunicationAgent",
|
"intelligent": ("intelligent_agent", "IntelligentCommunicationAgent"),
|
||||||
"intelligentcommunication": "IntelligentCommunicationAgent",
|
"intelligentcommunication": (
|
||||||
|
"intelligent_agent",
|
||||||
|
"IntelligentCommunicationAgent",
|
||||||
|
),
|
||||||
}
|
}
|
||||||
|
|
||||||
if key in builtin_agents:
|
if key in builtin_agents:
|
||||||
class_name = builtin_agents[key]
|
module_name, class_name = builtin_agents[key]
|
||||||
try:
|
try:
|
||||||
module = import_module("agent")
|
module = import_module(module_name)
|
||||||
agent_cls = getattr(module, class_name)
|
agent_cls = getattr(module, class_name)
|
||||||
except AttributeError as exc: # pragma: no cover - optional dependency
|
except AttributeError as exc: # pragma: no cover - optional dependency
|
||||||
raise RuntimeError(f"{class_name} is not available in agent module") from exc
|
raise RuntimeError(f"{class_name} is not available in agent module") from exc
|
||||||
|
|
|
||||||
92
intelligent_agent.py
Normal file
92
intelligent_agent.py
Normal file
|
|
@ -0,0 +1,92 @@
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
from collections import deque
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
from typing import Deque, Optional, Pattern, Tuple
|
||||||
|
|
||||||
|
try:
|
||||||
|
from litellm import completion
|
||||||
|
except ImportError: # pragma: no cover - optional dependency
|
||||||
|
completion = None # type: ignore[assignment]
|
||||||
|
|
||||||
|
from agent import Agent
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class IntelligentCommunicationAgent(Agent):
|
||||||
|
"""Agent that uses a language model to answer private tells."""
|
||||||
|
|
||||||
|
model: str = "mistral/mistral-tiny"
|
||||||
|
system_prompt: str = (
|
||||||
|
"Du bist Mistle, ein hilfsbereiter MUD-Bot. "
|
||||||
|
"Antworte freundlich und knapp in deutscher Sprache."
|
||||||
|
)
|
||||||
|
temperature: float = 0.7
|
||||||
|
max_output_tokens: int = 120
|
||||||
|
fallback_reply: str = "Hallo! Ich bin Mistle und ein Bot."
|
||||||
|
tell_pattern: Pattern[str] = field(
|
||||||
|
default_factory=lambda: re.compile(
|
||||||
|
r"^(?P<player>[^\s]+) teilt (d|D)ir mit: (?P<message>.+)$",
|
||||||
|
re.MULTILINE,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
last_output: str = field(default="", init=False)
|
||||||
|
pending_replies: Deque[Tuple[str, str]] = field(default_factory=deque, init=False)
|
||||||
|
|
||||||
|
def observe(self, output: str) -> None:
|
||||||
|
if not output:
|
||||||
|
return
|
||||||
|
self.last_output = output
|
||||||
|
for match in self.tell_pattern.finditer(output):
|
||||||
|
player = match.group("player").strip()
|
||||||
|
message = match.group("message").strip()
|
||||||
|
if not player:
|
||||||
|
continue
|
||||||
|
self.pending_replies.append((player, message))
|
||||||
|
print(f"[Agent] Received message from {player}: {message}")
|
||||||
|
|
||||||
|
def decide(self) -> Optional[str]:
|
||||||
|
if not self.pending_replies:
|
||||||
|
return None
|
||||||
|
player, message = self.pending_replies.popleft()
|
||||||
|
reply_text = self._generate_reply(player, message)
|
||||||
|
reply = f"teile {player} mit {reply_text}"
|
||||||
|
print(f"[Agent] Replying to {player} with model output")
|
||||||
|
return reply
|
||||||
|
|
||||||
|
def _generate_reply(self, player: str, message: str) -> str:
|
||||||
|
if completion is None:
|
||||||
|
print(
|
||||||
|
"[Agent] litellm is not installed; falling back to default reply",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
|
return self.fallback_reply
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = completion(
|
||||||
|
model=self.model,
|
||||||
|
messages=[
|
||||||
|
{"role": "system", "content": self.system_prompt},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": (
|
||||||
|
f"Spieler {player} schreibt: {message}\n"
|
||||||
|
"Formuliere eine kurze, freundliche Antwort."
|
||||||
|
),
|
||||||
|
},
|
||||||
|
],
|
||||||
|
temperature=self.temperature,
|
||||||
|
max_tokens=self.max_output_tokens,
|
||||||
|
)
|
||||||
|
except Exception as exc: # pragma: no cover - network/runtime errors
|
||||||
|
print(f"[Agent] Model call failed: {exc}", file=sys.stderr)
|
||||||
|
return self.fallback_reply
|
||||||
|
|
||||||
|
try:
|
||||||
|
content = response["choices"][0]["message"]["content"].strip()
|
||||||
|
except (KeyError, IndexError, TypeError): # pragma: no cover - defensive
|
||||||
|
return self.fallback_reply
|
||||||
|
|
||||||
|
return content or self.fallback_reply
|
||||||
Loading…
Add table
Reference in a new issue