mistle/agent.py

200 lines
6.8 KiB
Python

from __future__ import annotations
import re
import sys
from abc import ABC, abstractmethod
from collections import deque
from dataclasses import dataclass, field
from typing import Deque, Optional, Pattern, Set, Tuple
try:
from litellm import completion
except ImportError: # pragma: no cover - optional dependency
completion = None # type: ignore[assignment]
class Agent(ABC):
"""Interface for autonomous Telnet actors."""
@abstractmethod
def observe(self, output: str) -> None:
"""Receive the latest text emitted by the server."""
@abstractmethod
def decide(self) -> Optional[str]:
"""Return the next command to send, or ``None`` to stay idle."""
@dataclass
class SimpleAgent(Agent):
"""Minimal agent that always returns the same command."""
default_command: str = "schau"
last_output: str = field(default="", init=False)
def observe(self, output: str) -> None:
if output:
self.last_output = output
def decide(self) -> Optional[str]:
return self.default_command
@dataclass
class ExploreAgent(Agent):
"""Agent that inspects every noun it discovers in the room description."""
look_command: str = "schau"
inspect_command: str = "untersuche"
nouns_pattern: Pattern[str] = field(
default_factory=lambda: re.compile(r"\b[A-ZÄÖÜ][A-Za-zÄÖÜäöüß-]*\b")
)
last_output: str = field(default="", init=False)
look_sent: bool = field(default=False, init=False)
pending_targets: Deque[str] = field(default_factory=deque, init=False)
seen_targets: Set[str] = field(default_factory=set, init=False)
inspected_targets: Set[str] = field(default_factory=set, init=False)
def observe(self, output: str) -> None:
if not output:
return
self.last_output = output
if not self.look_sent:
return
for noun in self.nouns_pattern.findall(output):
target = noun.strip()
key = target.lower()
if not target or key in self.seen_targets:
continue
self.seen_targets.add(key)
self.pending_targets.append(target)
def decide(self) -> Optional[str]:
if not self.look_sent:
self.look_sent = True
print("[Agent] Exploring room, sending 'schau'")
return self.look_command
if self.pending_targets:
target = self.pending_targets.popleft()
key = target.lower()
self.inspected_targets.add(key)
progress = f"[Agent] Explored {len(self.inspected_targets)}/{len(self.seen_targets)} — untersuche {target}"
print(progress)
return f"{self.inspect_command} {target}"
return None
@dataclass
class CommunicationAgent(Agent):
"""Agent that replies to private tells."""
reply_template: str = "teile {player} mit Hallo! Ich bin Mistle und ein Bot."
tell_pattern: Pattern[str] = field(
default_factory=lambda: re.compile(
r"^(?P<player>[^\s]+) teilt (d|D)ir mit: (?P<message>.+)$",
re.MULTILINE,
)
)
last_output: str = field(default="", init=False)
pending_replies: Deque[Tuple[str, str]] = field(default_factory=deque, init=False)
def observe(self, output: str) -> None:
if not output:
return
self.last_output = output
for match in self.tell_pattern.finditer(output):
player = match.group("player").strip()
message = match.group("message").strip()
if not player:
continue
self.pending_replies.append((player, message))
print(f"[Agent] Received message from {player}: {message}")
def decide(self) -> Optional[str]:
if not self.pending_replies:
return None
player, _ = self.pending_replies.popleft()
reply = self.reply_template.format(player=player)
print(f"[Agent] Replying to {player}")
return reply
@dataclass
class IntelligentCommunicationAgent(Agent):
"""Agent that uses a language model to answer private tells."""
model: str = "mistral/mistral-tiny"
system_prompt: str = (
"Du bist Mistle, ein hilfsbereiter MUD-Bot. "
"Antworte freundlich und knapp in deutscher Sprache."
)
temperature: float = 0.7
max_output_tokens: int = 120
fallback_reply: str = "Hallo! Ich bin Mistle und ein Bot."
tell_pattern: Pattern[str] = field(
default_factory=lambda: re.compile(
r"^(?P<player>[^\s]+) teilt (d|D)ir mit: (?P<message>.+)$",
re.MULTILINE,
)
)
last_output: str = field(default="", init=False)
pending_replies: Deque[Tuple[str, str]] = field(default_factory=deque, init=False)
def observe(self, output: str) -> None:
if not output:
return
self.last_output = output
for match in self.tell_pattern.finditer(output):
player = match.group("player").strip()
message = match.group("message").strip()
if not player:
continue
self.pending_replies.append((player, message))
print(f"[Agent] Received message from {player}: {message}")
def decide(self) -> Optional[str]:
if not self.pending_replies:
return None
player, message = self.pending_replies.popleft()
reply_text = self._generate_reply(player, message)
reply = f"teile {player} mit {reply_text}"
print(f"[Agent] Replying to {player} with model output")
return reply
def _generate_reply(self, player: str, message: str) -> str:
if completion is None:
print(
"[Agent] litellm is not installed; falling back to default reply",
file=sys.stderr,
)
return self.fallback_reply
try:
response = completion(
model=self.model,
messages=[
{"role": "system", "content": self.system_prompt},
{
"role": "user",
"content": (
f"Spieler {player} schreibt: {message}\n"
"Formuliere eine kurze, freundliche Antwort."
),
},
],
temperature=self.temperature,
max_tokens=self.max_output_tokens,
)
except Exception as exc: # pragma: no cover - network/runtime errors
print(f"[Agent] Model call failed: {exc}", file=sys.stderr)
return self.fallback_reply
try:
content = response["choices"][0]["message"]["content"].strip()
except (KeyError, IndexError, TypeError): # pragma: no cover - defensive
return self.fallback_reply
return content or self.fallback_reply