feat: intelligent ai enabled communication agent
This commit is contained in:
parent
1daffc871e
commit
77fcb26a38
6 changed files with 1968 additions and 8 deletions
3
.env
3
.env
|
|
@ -5,4 +5,5 @@ MISTLE_PASSWORD=sl-mudbot
|
|||
MISTLE_LOGIN_PROMPT=Wie heisst Du denn ("neu" fuer neuen Spieler) ?
|
||||
MISTLE_EXIT_COMMAND=schlaf ein
|
||||
MISTLE_AGENT_MODE=true
|
||||
MISTLE_AGENT=communication
|
||||
MISTLE_AGENT=intelligent
|
||||
MISTRAL_API_KEY=eohe7Di7vuznINFqW5VyQIPenbyPX3le
|
||||
|
|
@ -8,7 +8,7 @@ Python-based Telnet helper for connecting to MUD servers, handling login flows,
|
|||
- Loads credentials and connection settings from a local `.env` file.
|
||||
- Interactive console session that mirrors server output and lets you type commands directly.
|
||||
- Optional always-on agent mode plus an on-demand `#execute <agent>` escape hatch for ad-hoc automations.
|
||||
- Built-in agents (`SimpleAgent`, `ExploreAgent`) with a pluggable interface for custom behaviours.
|
||||
- Built-in agents (`SimpleAgent`, `ExploreAgent`, `CommunicationAgent`, `IntelligentCommunicationAgent`) with a pluggable interface for custom behaviours.
|
||||
|
||||
## Requirements
|
||||
|
||||
|
|
@ -54,7 +54,8 @@ All variables can be placed in the `.env` file (one `KEY=value` per line) or pro
|
|||
| `MISTLE_LOGIN_PROMPT` | ❌ | Prompt string that signals the client to send credentials (e.g., `"Name:"`). When omitted, the client just waits for the initial banner. |
|
||||
| `MISTLE_EXIT_COMMAND` | ❌ | Command issued during graceful shutdown (after pressing `Ctrl-C`). Useful for `quit`/`save` macros. |
|
||||
| `MISTLE_AGENT_MODE` | ❌ | Enable full-time agent thread when set to truthy values (`1`, `true`, `yes`, `on`). Defaults to interactive-only mode. |
|
||||
| `MISTLE_AGENT` | ❌ | Select which agent class to instantiate when agent mode is active. Accepted values: `simple` (default), `explore` (requires `ExploreAgent` inside `agent.py`), or custom spec `module:ClassName`. |
|
||||
| `MISTLE_AGENT` | ❌ | Select which agent class to instantiate when agent mode is active. Accepted values: `simple` (default), `explore`, `communication`, `intelligent`/`intelligentcommunication` (LLM-backed), or custom spec `module:ClassName`. |
|
||||
| `MISTRAL_API_KEY` | ❌ | API key used by `IntelligentCommunicationAgent` (via `litellm`) when calling the `mistral/mistral-small-2407` model. |
|
||||
|
||||
## Agent Development
|
||||
|
||||
|
|
@ -65,11 +66,12 @@ All variables can be placed in the `.env` file (one `KEY=value` per line) or pro
|
|||
- `observe(output)` receives the latest server text; `decide()` returns the next command string or `None` to stay idle.
|
||||
- Commands issued by the agent are throttled to one per second so manual commands can still interleave smoothly.
|
||||
- `ExploreAgent` showcases a richer workflow: it sends `schau`, identifies German nouns, inspects each with `untersuche`, and prints `[Agent]` progress updates like `Explored 3/7 — untersuche Tisch`.
|
||||
- `CommunicationAgent` auto-replies to every direct tell with a canned greeting, while `IntelligentCommunicationAgent` routes each tell through `litellm` (default model `mistral/mistral-small-2407`) to craft a contextual answer.
|
||||
|
||||
## On-Demand Agents
|
||||
|
||||
- When `MISTLE_AGENT_MODE` is **off**, you can trigger an ephemeral agent at any time with `#execute <agent_spec>`.
|
||||
- The syntax accepts the same values as `MISTLE_AGENT` and reuses the `build_agent` helper, so `#execute simple`, `#execute explore`, or `#execute mypackage.mymodule:CustomAgent` are all valid.
|
||||
- The syntax accepts the same values as `MISTLE_AGENT` and reuses the `build_agent` helper, so `#execute simple`, `#execute explore`, `#execute intelligent`, or `#execute mypackage.mymodule:CustomAgent` are all valid.
|
||||
- On-demand runs share the current session, respect the one-command-per-second limit, and stop automatically after a few seconds of inactivity.
|
||||
|
||||
## Danger Zone
|
||||
|
|
|
|||
84
agent.py
84
agent.py
|
|
@ -1,11 +1,17 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import re
|
||||
import sys
|
||||
from abc import ABC, abstractmethod
|
||||
from collections import deque
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Deque, Optional, Pattern, Set, Tuple
|
||||
|
||||
try:
|
||||
from litellm import completion
|
||||
except ImportError: # pragma: no cover - optional dependency
|
||||
completion = None # type: ignore[assignment]
|
||||
|
||||
|
||||
class Agent(ABC):
|
||||
"""Interface for autonomous Telnet actors."""
|
||||
|
|
@ -114,3 +120,81 @@ class CommunicationAgent(Agent):
|
|||
reply = self.reply_template.format(player=player)
|
||||
print(f"[Agent] Replying to {player}")
|
||||
return reply
|
||||
|
||||
|
||||
@dataclass
|
||||
class IntelligentCommunicationAgent(Agent):
|
||||
"""Agent that uses a language model to answer private tells."""
|
||||
|
||||
model: str = "mistral/mistral-tiny"
|
||||
system_prompt: str = (
|
||||
"Du bist Mistle, ein hilfsbereiter MUD-Bot. "
|
||||
"Antworte freundlich und knapp in deutscher Sprache."
|
||||
)
|
||||
temperature: float = 0.7
|
||||
max_output_tokens: int = 120
|
||||
fallback_reply: str = "Hallo! Ich bin Mistle und ein Bot."
|
||||
tell_pattern: Pattern[str] = field(
|
||||
default_factory=lambda: re.compile(
|
||||
r"^(?P<player>[^\s]+) teilt (d|D)ir mit: (?P<message>.+)$",
|
||||
re.MULTILINE,
|
||||
)
|
||||
)
|
||||
last_output: str = field(default="", init=False)
|
||||
pending_replies: Deque[Tuple[str, str]] = field(default_factory=deque, init=False)
|
||||
|
||||
def observe(self, output: str) -> None:
|
||||
if not output:
|
||||
return
|
||||
self.last_output = output
|
||||
for match in self.tell_pattern.finditer(output):
|
||||
player = match.group("player").strip()
|
||||
message = match.group("message").strip()
|
||||
if not player:
|
||||
continue
|
||||
self.pending_replies.append((player, message))
|
||||
print(f"[Agent] Received message from {player}: {message}")
|
||||
|
||||
def decide(self) -> Optional[str]:
|
||||
if not self.pending_replies:
|
||||
return None
|
||||
player, message = self.pending_replies.popleft()
|
||||
reply_text = self._generate_reply(player, message)
|
||||
reply = f"teile {player} mit {reply_text}"
|
||||
print(f"[Agent] Replying to {player} with model output")
|
||||
return reply
|
||||
|
||||
def _generate_reply(self, player: str, message: str) -> str:
|
||||
if completion is None:
|
||||
print(
|
||||
"[Agent] litellm is not installed; falling back to default reply",
|
||||
file=sys.stderr,
|
||||
)
|
||||
return self.fallback_reply
|
||||
|
||||
try:
|
||||
response = completion(
|
||||
model=self.model,
|
||||
messages=[
|
||||
{"role": "system", "content": self.system_prompt},
|
||||
{
|
||||
"role": "user",
|
||||
"content": (
|
||||
f"Spieler {player} schreibt: {message}\n"
|
||||
"Formuliere eine kurze, freundliche Antwort."
|
||||
),
|
||||
},
|
||||
],
|
||||
temperature=self.temperature,
|
||||
max_tokens=self.max_output_tokens,
|
||||
)
|
||||
except Exception as exc: # pragma: no cover - network/runtime errors
|
||||
print(f"[Agent] Model call failed: {exc}", file=sys.stderr)
|
||||
return self.fallback_reply
|
||||
|
||||
try:
|
||||
content = response["choices"][0]["message"]["content"].strip()
|
||||
except (KeyError, IndexError, TypeError): # pragma: no cover - defensive
|
||||
return self.fallback_reply
|
||||
|
||||
return content or self.fallback_reply
|
||||
|
|
|
|||
14
app.py
14
app.py
|
|
@ -152,12 +152,20 @@ def build_agent(agent_spec: str) -> Agent:
|
|||
if key == "simple":
|
||||
return SimpleAgent()
|
||||
|
||||
if key in {"explore", "communication"}:
|
||||
builtin_agents = {
|
||||
"explore": "ExploreAgent",
|
||||
"communication": "CommunicationAgent",
|
||||
"intelligent": "IntelligentCommunicationAgent",
|
||||
"intelligentcommunication": "IntelligentCommunicationAgent",
|
||||
}
|
||||
|
||||
if key in builtin_agents:
|
||||
class_name = builtin_agents[key]
|
||||
try:
|
||||
module = import_module("agent")
|
||||
agent_cls = getattr(module, f"{key.capitalize()}Agent")
|
||||
agent_cls = getattr(module, class_name)
|
||||
except AttributeError as exc: # pragma: no cover - optional dependency
|
||||
raise RuntimeError(f"{key.capitalize()}Agent is not available in agent module") from exc
|
||||
raise RuntimeError(f"{class_name} is not available in agent module") from exc
|
||||
return _instantiate_agent(agent_cls, normalized)
|
||||
|
||||
if ":" in normalized:
|
||||
|
|
|
|||
|
|
@ -4,4 +4,6 @@ version = "0.1.0"
|
|||
description = "Add your description here"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
dependencies = []
|
||||
dependencies = [
|
||||
"litellm>=1.77.4",
|
||||
]
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue